NOIP2011 聪明的质监员 三分

发布于 2017-08-04  4.41k 次阅读


[toggle hide="yes" title="题目" color=""]

【问题描述】
小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi。检验矿产的流程是:
1. 给定 m个区间[Li,Ri]
2. 选出一个参数W
3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi

Yi=j1×jvj, j[Li,Ri] wjW,j是矿石编号

这批矿产的检验结果Y为各个区间的检验值之和。即:

Y=i=1mYi

若这批矿产的检验结果与所给标准值 S 相差太多,就需要再去检验另一批矿产。小 T 不想费时间去检验另一批矿产,所以他想通过调整参数 W 的值,让检验结果尽可能的靠近标准值 S,即使得SY的绝对值最小。请你帮忙求出这个最小值。

【输入】
输入文件 qc.in。

第一行包含三个整数n,m,S,分别表示矿石的个数、区间的个数和标准值。
接下来的n 行,每行2 个整数,中间用空格隔开,第i+1 行表示i 号矿石的重量wi 和价值vi 。
接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li,Ri]的两个端点Li 和Ri。注意:不同区间可能重合或相互重叠。

【输出】
输出文件名为qc.out。
输出只有一行,包含一个整数,表示所求的最小值。

【输入输出样例】

qc.in

5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3

qc.out

10

【输入输出样例说明】
当W 选4 的时候,三个区间上检验值分别为20、5、0,这批矿产的检验结果为25,此时与标准值S 相差最小为10。
【数据范围】
对于10%的数据,有1≤n,m≤10;
对于30%的数据,有1≤n,m≤500;
对于50%的数据,有1≤n,m≤5,000;
对于70%的数据,有1≤n,m≤10,000;
对于100%的数据,有1≤n,m≤200,000,0 < wi, vi≤10^6,0 < S≤10^12,1≤Li≤Ri≤n。

[/toggle]

三分裸题,上午考试忘了离散,结果被范围卡掉了,WA了4个点。三分的范围不太好直接搞,而且必须要离散,但据学长介绍,可以限制L、R的范围跳循环,当L、R非常接近时,可以直接枚举、判断。

[toggle hide="no" title="代码" color=""]

 

[/toggle]


Narcissus | HZOIer | zhuohaoyu1228@gmail.com | QQ 943382974